General Instructions for IA2 - BaSTI Database Server

 

This form allows the user to download  ascii files creating using FRANEC code described in Pietrinferni, Cassisi, Salaris & Castelli (2004, ApJ, 612, 168).

Descriptions of individual fields on this form follow:

Filename

This string gives the name of the file contained into the Database, it is unique.

Data type

The available theoretical predictions are:

  • TRACK:
      the evolution of a stellar model followed from the Main-Sequece to the first thermal pulse.
  • TRACK HB:
      the evolution of a stellar model followed from the Zero Age Horizontal Branch (ZAHB) to the first thermal pulse.
  • ISOCHRON:
      the locus of H-R diagram (or CMD) populated by structures with the same age and initial chemical composition but different mass.
  • Tab. ZAHB:
      the locus of H-R diagram (or CMd) populated by structures with the same Helium core mass and chemical composition, but different total mass taken at the ZAHB phase.
  • Tab. End He:
      the locus of H-R diagram (or CMd) populated by structures with the same Helium core mass and chemical composition, but different total mass taken at the end of central Helium burning phase.
  • Summary Tab.:
      table with same important quantities taken at different evolutionary phases.

 

Scenario

  • CANONICAL:
      the models do not include gravitational settling, radiative acceleration, convective overshooting, rotational mixing.
  • OVERSHOOTING:
      the models do not include gravitational settling, radiative acceleration, rotational mixing, but account for core convective overshooting during the H-burning phase. The value adopted for the overshoot from the classical Schwarzschild convective boundary is equal to λOV·Hpwhere λOV=0.2 and Hp is the local pressure scale.
  • DIFFUSION:
      not yet available.
  • ROTATION:
      not yet available.

Age

It represents the age (in Gyr) of an isochron; the minimum value is 0.03 Gyr, while the maximum value depends from the adopted Mass loss (η) and Overshooting (λOV) parameters as summarized in the table:

η λOV Age max
0.2 0.0 19
0.2 0.2 9.5
0.4 0.0 15
0.4 0.2 9.5

 

Mass

It is the mass (in Solar Unit) of the structure. Its minimum and maximum values depend from the adopted Mass loss (η) and Overshooting (λOV) parameters as summarized in the table:

η λOV Mass min Mass max
0.2 0.0 0.5 2.5
0.2 0.2 1.1 2.5
0.4 0.0 0.5 10
0.4 0.2 1.1 10

 

 

Z

The mass fraction of the initial heavy elements abundance; the range covered is: 0.0001 ≤ Z ≤ 0.04

Y

The mass fraction of the initial helium abundance; the range covered is: 0.245 ≤ Y ≤ 0.303 
Actually, for each Z models have been computed by adopting a unique Y value given by: Y=1.44·(Z-0.0001)

[Fe/H]

The iron abundance in the spectroscopic formalism:

[Fe/H]= log10(Fe/H) - log10(Fesun/Hsun)

the range covered is: -2.62 ≤ [Fe/H] ≤ 0.40

 

[M/H]

The metal abundance in the spectroscopic formalism:

[Z/H]= log10(Z/H) - log10(Zsun/Hsun)

the range covered is: -2.27 ≤ [Fe/H] ≤ 0.40

 

Type

 

  both stellar evolution models and isochrones have been extended along the Asimptotic Giant Branch (AGB) stage to cover the full thermal pulses phase, using the synthetic AGB tecnique (Iben & Truran 1978, ApJ, 220, 980)

 

Mass loss

All models include mass loss according to the Reimers (1975) low:

dM/dt = -4 · 10-13 η ·(L/gR)         (Msun/yr)

(where L, g and R are the stellar luminosity, surface gravity and radius respectively) with the free parameter η set to 0.2 and 0.4.

 

Photometric system

All the theoretical predictions has been transferred from the theoretical to different photometric system:

F435W F475W F555W F606W F625W F775W F814W

 

Mg (u-g) (g-r) (r-i) (i-z)

 

MV (B-V) (U-B) (V-I) (V-R) (V-J) (V-K) (V-L) (H-K)

 

My (u-b) (u0-b) (b-y) (m1) (c1) (c1_0) (Hβ) (hk)

 

MV (V-B) (B-U) (U-W) (B-L) (L-U)
F122W F130lp F160W F165lp F170W F185W F218W F255W F300W F336W F380W F439W F450W F555W F606W F622W F675W F702W F791W F814W F850lp

 

F218W F225W F275W F336W F390W F438W F475W F555W F606W F625W F775W F814W

 

Mixture

All the theoretical predictions have been computed adopting two different distributions for the heavy elements:

 

 
SCALED SOLAR
(Grevesse & Noel 1993)
ALPHA ENHANCED
(Weiss 1995)
Element
number fract.
 
Mass fract.
number fract.
 
Mass fract.
C12
0.245518
 
0.173285
0.108211
 
0.076451
N14
0.064578
 
0.053152
0.028462
 
0.023450
O16
0.512966
 
0.482273
0.714945
 
0.672836
Ne20
0.083210
 
0.098668
0.071502
 
0.084869
Na23
0.001479
 
0.001999
0.000652
 
0.000882
Mg24
0.026308
 
0.037573
0.029125
 
0.041639
Al27
0.002042
 
0.003238
0.000900
 
0.001428
Si28
0.024552
 
0.040520
0.021591
 
0.035669
P30
0.000195
 
0.000355
0.000086
 
0.000157
32
0.011222
 
0.021142
0.010575
 
0.019942
Cl35
0.000219
 
0.000456
0.000096
 
0.000201
Ar40
0.002291
 
0.005379
0.001010
 
0.002373
K39
0.000091
 
0.000210
0.000040
 
0.000092
Ca40
0.001586
 
0.003734
0.002210
 
0.005209
Ti48
0.000075
 
0.000211
0.000137
 
0.000387
Cr52
0.000329
 
0.001005
0.000145
 
0.000443
Mn55
0.000170
 
0.000548
0.000075
 
0.000242
Fe56
0.021877
 
0.071794
0.009642
 
0.031675
Ni59
0.001293
 
0.004459
0.000595
 
0.002056

 

Code version

The stellar evolutionary codes adopted in this work are the FRANEC (Frascati Raphson-Newton Evolutionary Code), i.e. the same used by Cassisi & Salaris (1997) and Salris & Cassisi (1998), with various updates:

Physical inputs
2003 2007
Equation of State
Irwin 2003
Irwin 2003
Low-T radiative opacity
Alexander & Ferguson 1994
Ferguson et al. 2005
High-T radiative opacity
Iglesias & Rogers 1996
Iglesias & Rogers 1996
Conductive opacity
Potekhin 1999
Potekhin 1999
Nuclear reaction
NACRE (Angulo et al. 1999)
NACRE (Angulo et al. 1999)
Plasma neutrino
Haft et al. 1994
Haft et al. 1994
Boundary Condition
Krishna-Swamy 1966
Krishna-Swamy 1966
Mixing length
1.913
2.013
Atomic Diffusion
NO
NO
Mass loss
Reimers 1975
Reimers 1975

Rad opacity

This field indicates the prescription followed to include the low temperature radiative opacity:

  • Alexander & Ferguson 1994 ⇒ Alexander D. R., & Ferguson J. W., 1994, ApJ, 437, 879
  • Ferguson 2005 ⇒ Ferguson et al. 2005, ApJ, 623, 585

For any problem please contact: IA2